Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Macro Lett ; 13(1): 82-86, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38170995

RESUMEN

Film formation via the drying of ionomer solutions is a crucial process that has a strong influence on the morphology and transport properties of polymer electrolyte membranes and thin films. However, the microscopic mechanism of this process remains unclear. Here, we elucidate this mechanism using a coarse-grained model based on all-atom molecular dynamics that accurately reproduces small-angle X-ray scattering spectra. In dilute ionomer solutions, ionomers form rod-like bundles with diameters of 1.5-2 nm. As the water solvent evaporates, these bundles gradually aggregate and connect to each other, while maintaining their diameter. Finally, the remaining water forms nanosized clusters surrounded by the surfaces of the bundles with hydrophilic sulfonate groups.

2.
Soft Matter ; 13(35): 5991-5999, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28776057

RESUMEN

The conformation of polyelectrolyte aggregates as a function of the backbone rigidity is investigated by coarse-grained molecular dynamics simulation. The polyelectrolyte is represented by a bead-spring chain with charged side chains. The simulations start from the uniform distributions of the polyelectrolytes, and the resultant polyelectrolyte conformation after a few microseconds exhibits spherical self-aggregates, clusters, or bending bundle-like aggregates, depending on the backbone rigidity. The interaggregate structures on a large scale are featured by the static structure factor (SSF). The simulated SSFs of the bending bundle-like aggregates are consistent with those of the small angle X-ray scattering (SAXS) measurement so we successfully assign the microscopic structures of polyelectrolytes to the SAXS measurement. The power-law of the SSFs for the bundle conditions is steeper than that of the conventional cylinder model. The present study finds that such discrepancy in the power-law results from the bending of the bundle-like aggregates. In addition, the relaxation behavior includes slow dynamics. The present study proposes that such slow dynamics results from diffusion-limited aggregation and from gliding processes to reduce local metastable folding within the aggregates.

3.
Artículo en Inglés | MEDLINE | ID: mdl-24329271

RESUMEN

Understanding the mechanisms of how colloidal solution properties and drying processes result in dry colloidal structures is essential for industrial applications such as paint, ceramics, and electrodes. In this study, we develop a computational method to simulate the drying process of colloidal suspensions containing solid particles and polymers. The method consists of a solvent evaporation model, a fluid particle dynamics method, and a two-phase lattice Boltzmann method. We determine that a high-viscosity solvent, small surface tension, and a high evaporation rate of the solvent lead to a structure with dispersed particles and interconnected pores. When these conditions are not present, the particles agglomerate and the pores are disconnected.

4.
Phys Chem Chem Phys ; 11(20): 3892-9, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19440617

RESUMEN

First-principles molecular dynamics simulations have been carried out to investigate the nature of proton dynamics in Nafion, a representative polymer electrolyte membrane (PEM) widely used in PEM fuel cells. From the trajectories of the simulations, diffusion coefficients for the protonic defects were calculated to be 0.3 x 10(-5) cm(2) s(-1) and 7.1 x 10(-5) cm(2) s(-1) for lambda = 4.25 and 12.75, respectively, where lambda denotes hydration levels inside Nafion defined as a number of water molecules per sulfonic group. Our simulations show that proton hopping probability does not depend much on the water content inside Nafion. This finding indicates that the classical vehicular (or en masse) diffusion model, which has been employed to account for the slow diffusion process of protons in low water-content Nafion, is an oversimplification and does not correctly describe proton dynamics. Furthermore, it is found that difference in the value of the proton diffusion coefficient with respect to water content inside Nafion is related to the different character of proton hopping occurring in the water hydrogen bond network. When the water content is low, the proton hopping occurs in a manner that does not contribute constructively to proton mobility, while when the water content is high, it occurs in a manner which is beneficial to overall proton mobility. Such a different nature of proton hoppings arises mainly from the difference in the connectivity of water hydrogen bond network. Our results broadly support earlier simulation studies and provide the molecular level origin of properties arising from the proton dynamics in Nafion.

5.
J Phys Chem B ; 112(37): 11586-94, 2008 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-18717541

RESUMEN

The effects of water content on water transport and electro-osmosis in a representative polymer electrolyte membrane, Nafion, are investigated in detail by means of first-principles molecular dynamics (MD) simulations in the presence of a homogeneous electric field. We have directly evaluated electro-osmotic drag coefficients (the number of water molecules cotransported with proton conduction) from the trajectories of the first-principles MD simulations and also explicitly evaluated factors that contribute to the electro-osmotic drag coefficients. In agreement with previously reported experiments, our calculations show virtually constant values ( approximately 1) of the electro-osmotic drag coefficients for both low and high water content states. Detailed comparisons of each factor contributing to the drag coefficient reveal that an increase in water content increases the occurrence of the Grotthuss-like effective proton transport process, whose contribution results in a decrease in the electro-osmotic drag coefficient. At the same time, an environment that is favorable for the Grotthuss-like effective proton transport process is also favorable for the transport of water arising from water transport occurring beyond the hydration shell around the protons, whose contribution results in an increase in the electro-osmotic drag coefficient. Conversely, an environment that is not favorable for proton conduction is also not favorable for water transport. As a result, the electro-osmotic drag coefficient shows virtually identical values with respect to change in the water content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...